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Transmission electron microscopy has been used to investigate the (�1100) and
(�1103) inversion domain boundaries in a ZnO film prepared by molecular beam
epitaxy. The inversion domain was revealed by dark-field images and confirmed
by convergent-beam electron diffraction. Interacting with a (0002) stacking fault,
the inversion domain boundary in the (�1100) plane alters its orientation from the
[0001] direction and climbs on the (�1103) plane to release the strain energy. These
features are characterized and analysed by high-resolution electron microscopy
and the geometric phase method. The findings are significant for understanding
the formation and propagation of inverse domain boundaries in epitaxial
ZnO films.

1. Introduction

Over the past decades, numerous studies have been focused on the wide-band-gap
oxide semiconductor ZnO for its many applications in the electronics industry,
particularly in optoelectronics. Its high excitation energy (60meV) makes ZnO a very
promising candidate for laser applications at room temperature [1]. In addition, ZnO
is one of the best candidates for a diluted magnetic semiconductor material [2].
However, the prerequisite for such applications is to achieve high quality p- and/or
n-type ZnO thin films. There are several different growth techniques to prepare ZnO
films with a low defect density. For example, many high-quality epitaxial ZnO thin
films have been grown on Al2O3 substrates by molecular beam epitaxy (MBE) during
the past few years [3]. However, the defects, including rotation domains, dislocations,
stacking defaults and inversion domains, cannot be eliminated completely when
the growth parameters are not optimized thoroughly. These defects are detrimental
to the electronic and mechanical applications of ZnO thin films, for example, via the
introduction of electrically active energy levels in the energy gap [4]. It should be
emphasized that the inversion domain of III–V and II–VI semiconductors affects
impurity incorporation [5] and doping efficiency [6]. ZnO has a similar wurtzite
crystalline structure to GaN and they have similar electronic and optical properties.
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defects that were found in epitaxial GaN thin films grown on the same substrate
material [7, 8]. The GaN inversion domain was investigated several years ago, both
theoretically [9] and experimentally [10]. However, the ZnO inversion domain
boundary (IDB) has only been studied theoretically from a first-principles total-
energy calculation [11] and experimental evidence for inversion domains is sparse.
In the present work, the classic transmission electron microscope (TEM) dark-field
image technique and high-resolution electron microscopy (HREM) have been used
to investigate IDBs in ZnO thin films. The geometric phase [12, 13] method was
used to visualize the variation of the local displacement field around the IDB area
and the correlations of IDB propagation with stacking faults studied experimentally.

2. Experiment and data processing

The ZnO films were grown on �-Al2O3 (0001) substrates using radio-frequency
plasma-assisted molecular beam epitaxy [3, 4]. Elemental zinc (6N grade), and
magnesium (5N grade) were used as molecular beam sources in an oxygen plasma
(O2 gas, 6N grade). The substrates were degreased in trichloroethylene and acetone
followed by a deionized water rinse. In order to completely eliminate the formation
of rotation domains in the ZnO films, surface modification of the �-Al2O3 (0001)
substrate was performed using a Mg wetting layer in the growth chamber prior to the
growth of the ZnO. The process of modification consists of thermal cleaning of the
substrate surface at 750�C, exposure to oxygen plasma for 30min at 80�C and
deposition of a well-defined Mg layer under ultrahigh vacuum at 80�C. Then, the
temperature was increased to 300�C, most of the Mg layer was re-vaporized and
an ultrathin Mg wetting layer obtained on which the ZnO film growth was begun
using a two-step growth method, e.g. a buffer layer growth at 400�C followed by an
epilayer growth at 650�C for 3 h. The specimens for TEM investigation were
prepared by a standard procedure, which includes mechanical polishing, dimple
grinding and low-angle ion milling. The dark-field image and HREM observations
were performed with a Philips CM-200-FEG system operated at 200 kV. The NCEM
phase extension [14] to Gatan DigitalMicrograph on a Macintosh system were
used to process the HREM image in order to find the local lattice displacement
near the defect.

3. Results and discussion

The inversion domains in GaN can be characterized by dark-field images [15]. These
domains display inversion contrast in TEM dark-field images under g¼ (000�2)
and g¼ (0002) with the electron beam along the non-centrosymmetric [11�20] axis.
We used the same method to characterize the inversion domain in ZnO. The
appropriate dark-field images are shown in figure 1a and b. It is very clear that
an inversion domain, marked by the white frame, exists in the middle of the images
because this area has reverse contrast in the corresponding two images. As shown
in the figures, one is dark while the other is bright. The polarities of the film were

688 Y. Z. Liu et al.
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identified by convergent-beam electron diffraction (CBED) by comparing the
experimental and Bloch-simulated [16] results, as shown in figure 1c–e. Figure 1c is a
CBED pattern taken from the domain region and figure 1e is a CBED pattern taken
from another area, as indicated by the large white arrows. Figure 1d is the simulated
CBED pattern for a 140 nm thick film of ZnO having Zn-polarity and with 64 beams
included. As revealed in figure 1c and 1e, the (0002) and (000�2) diffraction scans
exchange black and white contrast. Comparison with the simulated CBED pattern
(figure 1d) indicates that the domain has Zn polarity and the remaining areas have O
polarity.

In order to picture the IDB clearly, a HREM image was obtained, as shown
in figure 2. The IDB lies in the (�1100) plane and is characterized by a white-dot chain
as indicated by arrows. It can be interpreted by the model proposed by Yan and Al-
Jassim [11]. The grey/white dots represent holes amongst atoms. The dark regions
along the grey/white dots in the image are Zn–O atom pairs. The observation
direction is along [11�20]. Across this boundary, the Zn and O positions are

Figure 1. Dark-field TEM images with (a) g¼ (0002) and (b) g¼ (0002). CBED patterns
for (c) the domain, (d) simulated for a of 140 nm thick Zn-polarity ZnO model with 64 beams
included and (e) the remaining areas.

Inversion domain boundary in a ZnO film 689
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interchanged, as shown in the insert in figure 2, i.e. the polarity switches across

the IDB and the translation symmetry is broken. Based on the previous study [11],

the IDB should be bonded by Zn–O atom pairs instead of the unstable ones of

Zn–Zn and O–O. Following Yan and Al-Jassim [11], we use IDB* to indicate

the Zn–O hetero-atomic bonding structures of the IDB. There are 4(8)-atom

chain/channel structures alternately on the IDB*. Although they are energetically

favourable and stable, they can trap other interstitial atoms and dopants such as

N, C and O [11]. These 8-atom chain/channel structures, which are detrimental,

are highlighted by grey circles along the IDB*. They are larger than the regular

channels in the ZnO structure. In the HREM image, they appear as bigger white

spots, as indicated by the white circles in figure 2. The simulated HREM image

based on the IDB* atomic structure model is inserted at the bottom of figure 2.

The simulated HREM image agrees well with the experimental one.
The inversion domain boundary is not straight in the dark-field images.

We found that part of the IDB* has small distortions. A standard cross-sectional

HREM image is shown in figure 3. It reveals that the IDB* is distorted by a stacking

fault lying on the (0002) plane, as marked by the white elliptical circle. Interacted

with the stacking fault on the (0002) plane, the IDB* alters orientation along (�1100)

plane, climbs on the (�1103) and then reverts back to the (0002) plane. The angle

between the IDB* glide plane and the (0002) basal plane was measured to be about

31.3� (�5%) which is very similar to the theoretical calculated value of 31.65�, which

is the angle between the (�1103) and (0002) planes. As can seen in figure 2 and from

Yan and Al-Jassim [11], in order to reduce the boundary energy, the (0001) IDB*

consists of a 4(8)-atom Zn–O chain. Interacting with the (0002) stacking fault,

the (�1100) IBD* changes orientation to be along (�1103), as shown in figure 3, by the

following reaction:

ð0002ÞStackingFault þ ð�1100ÞIDB� ! ð�1103ÞIDB�:

Based on the HREM observations shown in figure 3, this (�1103) IDB* consists

of small pieces (steps) along (0002) and (�1100) planes. When the repulsive strain

Figure 2. HREM image of the inversion domain boundary taken along the [11�20] axis.
The insert shows the inversion domain model and its HREM simulation.

690 Y. Z. Liu et al.
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is fully released from the stacking fault region, the (�1103) IDB* will switch back to be
along the [0002] direction, as shown in figure 3.

Investigating the elastic and plastic strain fields are important because they are
energy favourable sites to trap or nest interstitial or dopant atoms in ZnO films.
Studying the contrast in figure 3 carefully, it can be seen that there are strain fields
around the stacking fault along the growth direction, i.e. the [0001] direction and the
(�1103) IDB*. To picture the strain distribution more efficiently, the geometric phase
method was used to map it. This method was used to analyse the lattice variations
corresponding to the HREM images. Here we characterize only the displacement
field qualitatively. We can characterize the local lattice displacement field by
comparing the local lattices with the reference lattice, which was defined by a perfect
lattice during data processing. The HREM image of the defective area, as shown in
figure 4a, was processed by the NCEM phase extension program embedded in the
Gatan DigitalMicrograph software [12, 13]. First, we calculated the fast-Fourier-
transformed (FFT) pattern and the power spectrum (PS) of figure 4a. Then the
(0002) and (�1100) reflections were masked to perform the inverse Fourier transform
(IFT) to obtain the phase image, P(r)¼�2�g@u(r), where @u(r) is the displacement
field with respect to the lattice planes defined by the frequency g. Two non-collinear
frequencies, g¼ (0002) and (�1100), were used to define the reference lattice.
The local lattice displacement field along [0001] direction is shown in figure 4b.
The elastic/plastic strain field gradient along the [0001] direction has a large impact
on the IDB* character. Compared with the perfect lattice, the brighter contrast
means a larger displacement field. The dark uniform contrast means the same lattice
displacement, indicating a perfect lattice. It reveals that the lattice displacement
field shows strong contrast immediately above the stacking fault for the bottom-up
grown ZnO thin film.

The strain fields show asymmetrical features on the two sides (up and down)
of the stacking fault and this indicates that the stacking fault is a growth defect rather
than being introduced by external forces. Both strain fields sitting on the up-side,
i.e. along the thin-film growth direction of the defective planes [the (0002) stacking
fault and the (�1103) IDB*], confirms that the stacking fault is a growth defect.

Figure 3. Cross-sectional HREM image of the inversion domain with a stacking fault
(from the partial insert layer). The dark contrast near the stacking fault and the glide plane
is caused by strain release.

Inversion domain boundary in a ZnO film 691
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Owing to the inserted extra atomic layer on the (0002) plane of the stacking fault,
a repulsive elastic strain is created above the stacking fault. The regions below
the stacking fault retain the perfect lattice because they were grown prior to the
introduction of the stacking fault. All the regions above the stacking fault including
the left-side of the (�1100) IDB* suffer from the strain field in subsequent growth.
The direct consequence of the repulsive elastic strain is that the (�1100) IDB* altered
orientation to climb on the (�1103) plane. The elastic strain field extended to be about
4.5 nm. On releasing the elastic strain field, the lattice relaxes and the (�1103) IDB*
switched back to be along the (�1100) plane. This is consistent with the HREM result
shown in figure 3. We find that the IDB* extending along [0001] again after the
stacking fault by about 4.8 nm.

4. Conclusions

In summary, we have identified and characterized the (�1100) and (�1103) inversion
domain boundaries in an epitaxial ZnO film on a sapphire substrate. Further to the

Figure 4. (a) HREM image of the stacking fault and moving IDB*. (b) The local
displacement distribution according to the area in (a). The contrast shows the displacement
(field) value; brighter means larger displacement. The strain release is clear along the glide
plane. It drives the IDB* aside.

692 Y. Z. Liu et al.
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to shift orientation with the assistance of elastic strain fields. The geometric phase

method was applied to characterize qualitatively the local lattice displacement

field near the defect. These finding are useful for understanding and controlling the

nucleation and propagation of the IDB* in ZnO thin films.
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